
Structures, Unions,

and Enumerations

Index

01. Structures
- Introduction

- Declaration and Initialization

02. Unions
- Introduction

- Mixed data structure

03. Enumerations

- Operations

- Types

- Nest and Array Structures

- Tag Field

Structures

01

Structures
Introduction

A structure is a logical choice for storing a collection of related data
items

The properties of a structure are different from those of an array

➢ The elements of a structure (its members) aren't required to have the same
type

➢ The members of a structure have names; to select a particular member, we
specify its name, not its position

In some languages, structures are called records, and members are
known as fields

4

Structures
Declaration and Initialization

A declaration of two structure variables that store
information about parts in a warehouse

struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

The members of a structure are stored in memory
in the order in which they're declared

➢ part1 is located at address 2000

➢ Integers occupy four bytes

➢ NAME_LEN has the value 25

➢ There are no gaps between the members

1000

1001
number

1002

1003

name

1004

1029

.

.

.

1030

1031

1032

1033

on_hand

5

Structures
Declaration and Initialization

Each structure represents a new scope

Any names declared in that scope won’t conflict with other names in a
program

In C terminology, each structure has a separate name space for its
members

struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

struct {
char name[NAME_LEN+1];
int number;
char sex;

} employee1, employee2;

6

Structures
Declaration and Initialization

Each structure represents a new scope

Any names declared in that scope won’t conflict with other names in a
program

In C terminology, each structure has a separate name space for its
members

struct {
int number;
char name[NAME_LEN+1];
int on_hand;

} part1, part2;

struct {
char name[NAME_LEN+1];
int number;
char sex;

} employee1, employee2;

7

Structures
Declaration and Initialization

A structure declaration may include an initializer
struct {

int number;
char name[NAME_LEN+1];
int on_hand;

} part1 = {528, "Disk drive", 10},
part2 = {914, "Printer cable", 5};

528

Disk drive

10

number

name

on_hand

914

Printer cable

5

number

name

on_hand

part1 part2

8

Structures
Declaration and Initialization

Structure initializers follow rules similar to those for array initializers

Expressions used in a structure initializer must be constant

An initializer can have fewer members than the structure it's initializing

Any "leftover" members are given 0 as their initial value

9

Structures
Declaration and Initialization

C99’s designated initializers can be used with structures

The initializer for part1 shown in the previous example

{528, "Disk drive", 10}

In a designated initializer, each value would be labeled by the name of
the member that it initializes

{.number = 528, .name = "Disk drive", .on_hand = 10}

The combination of the period and the member name is called a
designator

10

Structures
Declaration and Initialization

{.number = 528, .name = "Disk drive", .on_hand = 10}

Not all values listed in a designated initializer need be prefixed by a
designator

Designated initializers are easier to read and check for correctness

Also, values in a designated initializer don't have to be placed in the
same order that the members are listed in the structure

➢ The programmer doesn't have to remember the order in which the members
were originally declared

➢ The order of the members can be changed in the future without affecting
designated initializers

{.number = 528, "Disk drive", .on_hand = 10}
11

Structures
Operations

To access a member within a structure, we write the name of the
structure first, then a period, then the name of the member

Statements that display the values of part1's members

They can appear on the left side of an assignment or as the operand in
an increment or decrement expression

The . operator takes precedence over nearly all other operators,
including the &

printf("Part number: %d\n", part1.number);

528

Disk drive

10

number

name

on_hand

part1

part1.number = 258;

258

Disk drive

10

number

name

on_hand

part1

scanf("%d", &part1.on_hand);12

Structures
Operations

The other major structure operation is assignment

part2 = part1;

The effect of this statement is to copy part1.number into part2.number,
part1.name into part2.name, and so on

Arrays can't be copied using the = operator, but an array embedded
within a structure is copied when the enclosing structure is copied

Some programmers exploit this property by creating "dummy"
structures to enclose arrays that will be copied later

struct { int a[10]; } a1, a2;
a1 = a2; /* legal, since a1 and a2 are structures */

13

Structures
Operations

The = operator can be used only with structures of compatible types

Two structures declared at the same time (as part1 and part2 were) are
compatible

Structures declared using the same "structure tag" or the same type
name are also compatible

Other than assignment, C provides no operations on entire structures

In particular, the == and != operators can't be used with structures

14

Structures
Operations

Thinking

➢ Declare structure variables named a1, a2, and a3, each having members real
and image of type double

➢ Modify the declaration in (1) to fit
• a1's members initially have the values 0.0 and 1.0

• a2's members are 1.0 and 0.0 initially

➢ Write statement(s) that copy the members of a2 into a1

➢ Write statements that add the corresponding members of a1 and a2, storing
the result in a3

struct {

double real, image;

} a1, a2, a3;

} a1={0.0, 1.0}, a2={1.0, 0.0}, a3;

a1=a2;

a3.real =a1.real + a2.real;

a3.image =a1. image + a2. image; 15

Structures
Types

Suppose that a program needs to declare several structure variables
with identical members

We need a name that represents a type of structure, not a particular
structure variable

Ways to name a structure

➢ Declare a "structure tag"

➢ Use typedef to define a type name

16

Structures
Types

A structure tag is a name used to identify a particular kind of structure

The declaration of a structure tag named part

struct part {

int number;

char name[NAME_LEN+1];

int on_hand;

};

Note that a semicolon must follow the right brace

17

Structures
Types

The part tag can be used to declare variables

We can't drop the word struct because part isn’t a type name; without
the word struct, it is meaningless

struct part part1, part2;

Since structure tags aren't recognized unless preceded by the word
struct, they don't conflict with other names used in a program

part part1, part2; //Wrong

18

Structures
Types

The declaration of a structure tag can be combined with the declaration
of structure variables

All structures declared to have type struct part are compatible with one
another

struct part{

int number;

char name[NAME_LEN+1];

int on_hand;

} part1, part2;

struct part part1 = {528, "Disk drive", 10};

struct part part2;

part2 = part1; /* legal; both parts have the same type */

19

Structures
Types

As an alternative to declaring a structure tag, we can use typedef to
define a genuine type name

A definition of a type named Part

Part can be used in the same way as the built-in types

typedef struct {

int number;

char name[NAME_LEN+1];

int on_hand;

} Part;

Part part1, part2;

20

Structures
Types

Functions may have structures as arguments and return values

A function with a structure argument

A call of print_part

void print_part(struct part p)

{

printf("Part number: %d\n", p.number);

printf("Part name: %s\n", p.name);

printf("Quantity on hand: %d\n", p.on_hand);

}

print_part(part1);

21

Structures
Types

A function that returns a part structure

A call of build_part

struct part build_part(int number,
const char *name,
int on_hand)

{
struct part p;

p.number = number;
strcpy(p.name, name);
p.on_hand = on_hand;
return p;

}

part1 = build_part(528, "Disk drive", 10);
22

Structures
Types

Passing a structure to a function and returning a structure from a
function both require making a copy of all members in the structure

23

Structures
Types

To avoid this overhead, it's sometimes advisable to pass a pointer to a
structure or return a pointer to a structure

There are other reasons to avoid copying structures

➢ For example, the <stdio.h> header defines a type named FILE, which is
typically a structure

➢ Each FILE structure stores information about the state of an open file and
therefore must be unique in a program

➢ Every function in <stdio.h> that opens a file returns a pointer to a FILE
structure

➢ Every function that performs an operation on an open file requires a FILE
pointer as an argument

24

Structures
Types

Within a function, the initializer for a structure variable can be another
structure

void f(struct part part1)

{

struct part part2 = part1;

…

}

The structure being initialized must have automatic storage duration

25

Structures
Types

A compound literal can be used to create a structure "on the fly",
without first storing it in a variable

A compound literal can be used to create a structure that will be passed
to a function

print_part((struct part) {528, "Disk drive", 10});

part1 = (struct part) {528, "Disk drive", 10};

A compound literal can also be assigned to a variable

A compound literal consists of a type name within parentheses,
followed by a set of values in braces

When a compound literal represents a structure, the type name can be
a structure tag preceded by the word struct or a typedef name

26

Structures
Types

A compound literal may contain designators, just like a designated
initializer

A compound literal may fail to provide full initialization, in which case
any uninitialized members default to zero

print_part((struct part) {.on_hand = 10,

.name = "Disk drive",

.number = 528});

27

Structures
Types

Write two functions, assuming that the date structure contains three
members: month, day, and year (all of type int)

➢ int day_of_year (struct date d);
• Returns the day of the year (an integer between 1 and 366) that corresponds to the date d

➢ int compare_dates (struct date d1, struct date d2);
• Returns -1 if d1 is an earlier date than d2, +1 if d1 is a later date than d2, and 0 if d1 and d2 are

the same

28

Structures
Nest and Array Structures

Structures and arrays can be combined without restriction

Arrays may have structures as their elements, and structures may
contain arrays and structures as members

Nesting one structure inside another is often useful

Suppose that person_name is the following structure

struct person_name {

char first[FIRST_NAME_LEN+1];

char middle_initial;

char last[LAST_NAME_LEN+1];

};

29

Structures
Nest and Array Structures

We can use person_name as part of a larger structure

struct student {

struct person_name name;

int id, age;

char sex;

} student1, student2;

Accessing student1's first name, middle initial, or last name requires
two applications of the . operator

strcpy(student1.name.first, "Fred");

30

Structures
Nest and Array Structures

Having name be a structure makes it easier to treat names as units of
data

A function that displays a name could be passed one person_name
argument instead of three arguments

Copying the information from a person_name structure to the name
member of a student structure would take one assignment instead of
three

display_name(student1.name);

struct person_name new_name;

…

student1.name = new_name;

31

Structures
Nest and Array Structures

One of the most common combinations of arrays and structures is an
array whose elements are structures

An array of part structures capable of storing information about 100
parts

Accessing a part in the array is done by using subscripting

struct part inventory[100];

print_part(inventory[i]);

Accessing a member within a part structure requires a combination of
subscripting and member selection inventory[i].number = 883;

inventory[i].name[0] = '\0';

Accessing a single character in a part name requires subscripting,
followed by selection, followed by subscripting

32

Structures
Nest and Array Structures

const struct dialing_code country_codes[] =
{{"Argentina", 54}, {"Bangladesh", 880},
{"Brazil", 55}, {"Burma (Myanmar)", 95},
{"China", 86}, {"Colombia", 57},
{"Congo, Dem. Rep. of", 243}, {"Egypt", 20},
{"Ethiopia", 251}, {"France", 33},
{"Germany", 49}, {"India", 91},
{"Indonesia", 62}, {"Iran", 98},
{"Italy", 39}, {"Japan", 81},
{"Mexico", 52}, {"Nigeria", 234},
{"Pakistan", 92}, {"Philippines", 63},
{"Poland", 48}, {"Russia", 7},
{"South Africa", 27}, {"South Korea", 82},
{"Spain", 34}, {"Sudan", 249},
{"Thailand", 66}, {"Turkey", 90},
{"Ukraine", 380}, {"United Kingdom", 44},
{"United States", 1}, {"Vietnam", 84}};

struct dialing_code {

char *country;

int code;

};

33

Structures
Nest and Array Structures

A declaration of the inventory array that uses a designated initializer to
create a single part

struct part inventory[100] =

{[0].number = 528, [0].on_hand = 10,

[0].name[0] = '\0'};

The first two items in the initializer use two designators; the last item
uses three

34

Structures
Nest and Array Structures

Write a program to maintain a parts database using the following
structure

struct part {
int number;
char name[NAME_LEN+1];
int on_hand;

} database[MAX_PARTS];

– i: Add a new part number, part name, and initial quantity on
hand

– s: Given a part number, s, print the name of the part and the
current quantity on hand

– u: Given a part number, u, change the quantity on hand

– p: Print a table showing all information in the database

– q: Terminate program execution

35

Structures
Nest and Array Structures

36

Structures
Nest and Array Structures

37

Unions

02

Unions
Introduction

A union, like a structure, consists of one or more members, possibly of
different types

The compiler allocates only enough space for the largest of the
members, which overlay each other within this space

Assigning a new value to one member alters the values of the other
members as well

39

Unions
Introduction

The structure s and the union u differ in just one way

➢ The members of s are stored at different addresses in memory

➢ The members of u are stored at the same address

union {

int i;

double d;

} u;

struct {

int i;

double d;

} s;

union struct

d

i

d

i

40

Unions
Introduction

The properties of unions are almost identical to the properties of
structures

We can declare union tags and union types in the same way we declare
structure tags and types

Like structures, unions can be copied using the = operator, passed to
functions, and returned by functions

Only the first member of a union can be given an initial value

How to initialize the i member of u to 0

The expression inside the braces must be constant
union {

int i;

double d;

} u = {0};
41

Unions
Introduction

Designated initializers can also be used with unions

A designated initializer allows us to specify which member of a union
should be initialized

Only one member can be initialized, but it doesn’t have to be the first
one

Applications for unions

➢ Saving space

➢ Building mixed data structures

union {

int i;

double d;

} u = {.d = 10.0};

42

Unions
Mixed Data Structure

Unions can be used to create data structures that contain a mixture of
data of different types

Suppose that we need an array whose elements are a mixture of int
and double values

First, we define a union type whose members represent the different
kinds of data to be stored in the array

typedef union {

int i;

double d;

} Number;

43

Unions
Mixed Data Structure

Next, we create an array whose elements are Number values

A Number union can store either an int value or a double value

This makes it possible to store a mixture of int and double values in
number_array

Number number_array[1000];

number_array[0].i = 5;

number_array[1].d = 8.395;

44

Unions
Mixed Data Structure

There’s no easy way to tell which member of a union was last changed
and therefore contains a meaningful value

Consider the problem of writing a function that displays the value
stored in a Number union

There's no way for print_number to determine whether n contains an
integer or a floating-point number

void print_number(Number n)
{

if (n contains an integer)
printf("%d", n.i);

else
printf("%g", n.d);

}

45

Unions
Tag Field

Each time we assign a value to a member of u, we’ll also change kind
to remind us which member of u we modified

An example that assigns a value to the i member of u

n is assumed to be a Number variable

n.kind = INT_KIND;

n.u.i = 82;

46

Unions
Tag Field

When the number stored in a Number variable is retrieved, kind will tell
us which member of the union was the last to be assigned a value

A function that takes advantage of this capability

void print_number(Number n)

{

if (n.kind == INT_KIND)

printf("%d", n.u.i);

else

printf("%g", n.u.d);

}

47

Unions
Tag Field

Suppose that u is the following union, how much space will a C
compiler allocate for u? If char values occupy one byte, int values
occupy four bytes, and double values occupy eight bytes

union {

double a;

struct {

char b[4];

double c;

int d;

}e;

char f[4];

} u;

16

48

Unions
Tag Field

Let shape be the structure tag and write functions that perform the
following operations on a shape structure s passed as an argument

struct shape {

int shape_kind; //Rectangle or Circle

struct{

int x, y; //Coordinates of center

}center;

union {

struct {

int height, width;

}rectangle;

struct {

int radius;

}circle;

}u;

} s;

s.center.x = 0;
s.center.y = 0;
s.u.rectangle.height = 2;
s.u.rectangle.width = 2;
s.u.circle.radius = 2;

➢ Compute the area of s

➢ Move s by x units in the x direction and y units in
the y direction and return modified version

49

Enumerations

03

Enumerations
Introduction

In many programs, we'll need variables that have only a small set of
meaningful values

A variable that stores the suit of a playing card should have only four
potential values: "clubs," "diamonds," "hearts," and "spades."

A "suit" variable can be declared as an integer, with a set of codes that
represent the possible values of the variable

int s; /* s will store a suit */

…

s = 2; /* 2 represents "hearts" */

Problems with this technique

➢ We can’t tell that's has only four possible values

➢ The significance of 2 isn't apparent 51

Enumerations
Introduction

Using macros to define a suit "type" and names for the various suits is
a step in the right direction

An updated version of the previous example

#define SUIT int

#define CLUBS 0

#define DIAMONDS 1

#define HEARTS 2

#define SPADES 3

SUIT s;

…

s = HEARTS;

52

Enumerations
Introduction

Problems with this technique

➢ There's no indication to someone reading the program that the macros
represent values of the same "type"

➢ If the number of possible values is more than a few, defining a separate
macro for each will be tedious

An enumerated type is a type whose values are listed (“enumerated”)
by the programmer

Each value must have a name (an enumeration constant)

Although enumerations have little in common with structures and
unions, they're declared in a similar way

enum {CLUBS, DIAMONDS, HEARTS, SPADES} s1, s2;
53

Enumerations
Introduction

Enumeration constants are similar to constants created with the
#define directive, but they’re not equivalent

If an enumeration is declared inside a function, its constants won’t be
visible outside the function

As with structures and unions, there are two ways to name an
enumeration: by declaring a tag or by using typedef to create a genuine
type name

Enumeration tags resemble structure and union tags

enum suit {CLUBS, DIAMONDS, HEARTS, SPADES};

enum suit s1, s2;

suit variables would be declared in the following way
54

Enumerations
Introduction

As an alternative, we could use typedef to make Suit a type name

typedef enum {CLUBS, DIAMONDS, HEARTS, SPADES} Suit;

Suit s1, s2;

By default, the compiler assigns the integers 0, 1, 2, … to the constants
in a particular enumeration

In the suit enumeration, CLUBS, DIAMONDS, HEARTS, and SPADES
represent 0, 1, 2, and 3, respectively

The programmer can choose different values for enumeration constants

enum suit {CLUBS = 1, DIAMONDS = 2,

HEARTS = 3, SPADES = 4};

enum dept {RESEARCH = 20,

PRODUCTION = 10, SALES = 25};

55

Enumerations
Introduction

When no value is specified for an enumeration constant, its value is one
greater than the value of the previous constant

The first enumeration constant has the value 0 by default

enum EGA_colors {BLACK, LT_GRAY = 7,

DK_GRAY, WHITE = 15}

BLACK has the value 0, LT_GRAY is 7, DK_GRAY is 8, and WHITE is 15

56

Enumerations
Introduction

Enumeration values can be mixed with ordinary integers

int i;

enum {CLUBS, DIAMONDS, HEARTS, SPADES} s;

i = DIAMONDS; /* i is now 1 */

s = 0; /* s is now 0 (CLUBS) */

s++; /* s is now 1 (DIAMONDS) */

i = s + 2; /* i is now 3 */

s is treated as a variable of some integer type

CLUBS, DIAMONDS, HEARTS, and SPADES are names for the integers
0, 1, 2, and 3

57

Enumerations
Introduction

Suppose that b and i are declared as follows

Which of the following statements are legal? Which ones are "safe"
(always yield a meaningful result)?

enum {FALSE, TRUE} b;
int i;

(a) b = FALSE;
(b) b = i;
(c) b++;
(d) i = b;
(e) i = 2 * b + 1;

Legal: all

Safe: (a), (d), (e)

Not safe: (b), (c)

58

